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CONTRASTIVE LEARNING (CL)

INTRODUCTION

» Unsupervised Learning

» Transfer Knowledge

® Pretrain + Downstream task

» Data Augmentation

® Color Transformation
® Geometric Transformation

Frame Order

» Architecture pipelines
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Figure. Comparison on CL architectures
[textcitechen2021exploring].



CONTRASTIVE LEARNING (CL)
LoOss FUNCTION

Definition 1.1 (InfoNCE Loss)
The InfoNCE Loss Reads:

n

exp(8ii/7)
InfoNCE ;:1: 0g eXp(Sii/T) + Zk;ﬁi GXP(Sik/T) ( )

where s;; = sim(z;, z;) is a similarity between the feature z; and Z; from 2 semantically related data.

Definition 1.2 (Alignment and Uniformity)
[Wang and Isola (2020)] view CL as enforcing 2 properties:

2|z—2! |2
Latign = Z llzi =215 and  Lunitorm = logZe =112 2)

i ij
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OPTIMAL TRANSPORT (OT)
INTRODUCTION

3 o "

Figure. Four simple examples of optimal couplings between 1-D distributions, represented as maps above
(arrows) and couplings below [From Peyré and Cuturi (2019)].
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OPTIMAL TRANSPORT (OT)
FORMALISM

Definition 2.1 (Kantorovich’s Optimal Transport Problem)
given the cost matrix C, Kantorovich’s OT involves solving the coupling P

n

m
in (C.P)= C.P;
Pergng)< ,P) ;; iPi

where
U(a,b) = {P € R"*" | P1,, = a, PT1, = b}

)

4)



OPTIMAL TRANSPORT (OT)
FORMALISM

Definition 2.1 (Kantorovich’s Optimal Transport Problem)

given the cost matrix C, Kantorovich’s OT involves solving the coupling P

n m
in (C,P) = C;iP;; 3
pJmin (C,P) ;; iPj €)
where
U(a,b) = {P € R"*" | P1,, = a, PT1, = b} (4)

» Whenn =manda = b =1/n, the OT is equivalent to solve a balanced matching problem.

» Similarly, we introduce some relaxation of U(a, b):

U(l) ={PeR™" |1]P1, =1} and U(a)={Pc R""|P1, = a}



OPTIMAL TRANSPORT (OT)

REGULARIZATION

Here we introduce Regularization which is highly suited to execution of GPU.

Definition 2.2
The objective reads:
min(C, P) — eH(P) (5)
where
H(P) = — ) Pj(logP; —1). (6)
]

» We call H Entropic Regularization. The function H is 1-strongly concave.

» Other form of Regularization: G(P) = Zi,j (—%PZ-Z]- + Pj) It’s also 1-strongly concave.



OPTIMAL TRANSPORT (OT)

INVERSE OPTIMAL TRANSPORT

What if ...

» The cost matrix C is unknown but the coupling P is known?



OPTIMAL TRANSPORT (OT)

INVERSE OPTIMAL TRANSPORT

What if ...

» The cost matrix C is unknown but the coupling P is known?

Definition 2.3 (IOT problem)

By construct a min-min problem:

min KL(P|P’) where P’ = argmin(C’,P) — eH(P) )
Pel

where P is the ground truth and 0 represents learnable parameters. Trivially, use Kullback-Leibler divergence
to measure the distance between different distributions.



IOT INSPIRES CL

Example 2.1 (Equation 7 when U = U(a))

The Lagrangian of the equation 7 reads:

L(P,\) = (C?,P) — eH(P) — Zn: A (Zm: P — i)
i=1

j=1

Through JL/8P;; = 0, we have

e
7oy exp(=Ci/e)
Setting P = diag(1/n, .. .,1/n), the KL-divergence becomes:

_ exp CZ/E)
KL(P|P?) __,Zl <Zt— o0 (—C1/e)

) + Const

(8)

©)

(10)



IOT INSPIRES CL

Example 2.1 (Equation 7 when U = U(a))

The Lagrangian of the equation 7 reads:

L(P,)\) = (C?,P) — ¢H(P Z/\ (Z 1)

j=1

Through JL/8P;; = 0, we have

p_ o(G/)
7oy exp(=Ci/e)
Setting P = diag(1/n, .. .,1/n), the KL-divergence becomes:

) exp(—Cji/e)
= — t
KL(P|P?) E lo (Zt oxp(—C?/e) + Cons

» which is InfoNCE Loss!

(8)

©)

(10)



OPTIMAL TRANSPORT (OT)
IOT INSPIRES CL

Similarly, we could obtain the loss function under the circumstances in which U = U(1).

u) _ . nexp(—C%/e)
b Zl g<zt—1 >y exp(—C ts)/€> ()

However, if U = U(a, b), the closed-form coupling may not exists. We adopt Sinkhorn algorithm
[Appendix 1] to approximate:

n

m 5 ‘ 0 K
3 tewty (¥ 12
i=1 j=1

Use other regularization, like G(P) = Zi’j (—%Pizj + PZ-]->

ua)ii10g< 1+Z zz ) and L Zlog< n+ZC50t ” )
i=1
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BALANCED MATCHING
BALANCED MATCHING IOT-CL LOSss

Given two collective pomts sets within 2N data points, we get features {z;}} ; and {z;}V ,.

We denote zpx_1 = zx, Zok = Zj.

Z3 x&
A Z4 28

@ first augments
@ second augments

Figure. Balanced Matching
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BALANCED MATCHING
BALANCED MATCHING IOT-CL LOss

On the 2N data points,the cost matrix and f*‘i]' are defined as follows:

i ) 1/29N £ (iies
) - oo = nd P = / 1 (z,])' € (13)
1 -5 otherwise 0 otherwise

where S = 51U Sy, S1 and S are defined the cost matrix and coupling as below:

51:{(i,j)|i:2k,j:2k—1} szz{(i,j)yizzk—l,jzzk} where k=1,..N  (14)
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BALANCED MATCHING
BALANCED MATCHING IOT-CL LOss

Here we introduce different IOT-CL loss function for balanced matching problem under different
constraint relaxations .

IOT-CL Loss Under U(a)

exp(—Cl/e
LIL(])T CL__* Z ( N ( ] >.9/e)) (15)

(ij)es Zs:1 Tizs exp (fC

This is the same as NT-Xent loss in SimCLR [Chen et al. (2020)].

IOT-CL Loss Under U(1)

2Nexp(—Cl/e
LE)T cL = Z (Z N SN ( ! ) t/e)) (16)

j)€ES t=1 :H‘S?ét eXp(




BALANCED MATCHING
BALANCED MATCHING IOT-CL LOss

IOT-CL Loss Under U(a,b)
U@pb) _ 1 %
Lotoer = ToON Z log (Pij) (17)
(ij)es

where (P?j)K is solved by Sinkhorn algorithm, K is the iteration number.

IOT-CL Loss Under Gradient Constraint Relaxation

Under different constraint relaxations, P?j will learn to approximate f’ij in different ways.
We designed two gradient losses as below.

LITég"FiegL _ [U(@) _, jU@b),K=1 _, 1U(@b)K=2 _, yU(ab)K=4 _, 1 U(a,b)K=8 -

L{{OeJFECL _ LU(a,b),K:S N LU(a,b),K:4 N LU(a,b),K:Z N LU(a,b),Kzl N LU(a)

where the changing interval is fixed.



BALANCED MATCHING

GRADIENT EPSILON

IOT-CL Loss Under Gradient Epsilon

Figure. Entropic Regularization [Peyré and Cuturi (2019)].

Above figure illustrates the effect of the entropy to regularize a linear program over the simplex ) 5.

We can see the entropy pushes the original LP solution away from the boundary of the triangle.

Thus the e will control the "sharpness" of Pf]-. A gradient setting will help Pfj move to f’i]' faster.



BALANCED MATCHING
ALIGNMENT AND UNIFORMITY

We rethink the alignment and uniformity [Wang and Isola (2020)] from the matching prospective.
By adding the uniformity penalty, we can get alignment and uniformity loss with matching view:

min Lo = Lior—cr + A KL(Q?|P?) (19)
where
P?]-, positive pair
—g
Qj = mean P?]-, negative pair (20)
negative pair

The uniformity penalty will enhance our IOT-CL loss. The detailed experiment results will be
available in our final paper.



BALANCED MATCHING

VISUALIZATION
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Figure. Visualization on balanced pair matching.

Figure. The effect of the Uniformity loss
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APPENDIX
SINKHORN ALGORITHM

Firstly, initialize P’:
(P%)° = exp(7C9/6> (21)

Then update it step by step:
R R (N
(F) = L) o ((r))

where the symbol @ represents element-wise division.

(22)
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