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CONTRASTIVE LEARNING (CL)
INTRODUCTION

▶ Unsupervised Learning
▶ Transfer Knowledge

• Pretrain + Downstream task
▶ Data Augmentation

• Color Transformation
• Geometric Transformation
• Frame Order

▶ Architecture pipelines
• End-to-End
• Memory bank
• Momentum Encoder
• Clustering Figure. Comparison on CL architectures

[textcitechen2021exploring].
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CONTRASTIVE LEARNING (CL)
LOSS FUNCTION

Definition 1.1 (InfoNCE Loss)

The InfoNCE Loss Reads:

LInfoNCE =

n∑
i=1

− log
exp(sii/τ)

exp(sii/τ) +
∑

k ̸=i exp(sik/τ)
(1)

where sij = sim(zi, z′j) is a similarity between the feature zi and z′j from 2 semantically related data.

Definition 1.2 (Alignment and Uniformity)

[Wang and Isola (2020)] view CL as enforcing 2 properties:

Lalign =
∑

i

||zi − z′i||
2
2 and Luniform = log

∑
i,j

e2||zi−z′j ||
2
2 (2)
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OPTIMAL TRANSPORT (OT)
INTRODUCTION

Figure. Four simple examples of optimal couplings between 1-D distributions, represented as maps above
(arrows) and couplings below [From Peyré and Cuturi (2019)].
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OPTIMAL TRANSPORT (OT)
FORMALISM

Definition 2.1 (Kantorovich’s Optimal Transport Problem)

given the cost matrix C, Kantorovich’s OT involves solving the coupling P

min
P∈U(a,b)

⟨C,P⟩ =
n∑

i=1

m∑
j=1

CijPij (3)

where
U(a,b) = {P ∈ Rn×m

+ | P1m = a, PT1n = b} (4)

▶ When n = m and a = b = 1/n, the OT is equivalent to solve a balanced matching problem.
▶ Similarly, we introduce some relaxation of U(a,b):

U(1) = {P ∈ Rn×m
+ | 1T

nP1m = 1} and U(a) = {P ∈ Rn×m
+ | P1m = a}
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OPTIMAL TRANSPORT (OT)
REGULARIZATION

Here we introduce Regularization which is highly suited to execution of GPU.

Definition 2.2
The objective reads:

min
P∈U
⟨C,P⟩ − ϵH(P) (5)

where
H(P) = −

∑
i,j

Pij(logPij − 1). (6)

▶ We call H Entropic Regularization. The function H is 1-strongly concave.

▶ Other form of Regularization: G(P) =
∑

i,j

(
− 1

2 P2
ij + Pij

)
.It’s also 1-strongly concave.
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OPTIMAL TRANSPORT (OT)
INVERSE OPTIMAL TRANSPORT

What if ...
▶ The cost matrix C is unknown but the coupling P is known?

Definition 2.3 (IOT problem)

By construct a min-min problem:

min
θ

KL(P̃|Pθ) where Pθ = argmin
P∈U

⟨Cθ,P⟩ − ϵH(P) (7)

where P̃ is the ground truth and θ represents learnable parameters. Trivially, use Kullback–Leibler divergence
to measure the distance between different distributions.

7 / 18



OPTIMAL TRANSPORT (OT)
INVERSE OPTIMAL TRANSPORT

What if ...
▶ The cost matrix C is unknown but the coupling P is known?

Definition 2.3 (IOT problem)

By construct a min-min problem:

min
θ

KL(P̃|Pθ) where Pθ = argmin
P∈U

⟨Cθ,P⟩ − ϵH(P) (7)

where P̃ is the ground truth and θ represents learnable parameters. Trivially, use Kullback–Leibler divergence
to measure the distance between different distributions.

7 / 18



IOT INSPIRES CL

Example 2.1 (Equation 7 when U = U(a))

The Lagrangian of the equation 7 reads:

L(P, λ) = ⟨Cθ,P⟩ − ϵH(P)−
n∑

i=1

λi

 m∑
j=1

Pij −
1
n

 (8)

Through ∂L
/
∂Pij = 0, we have

Pθ
ij =

exp
(
−Cθ

ij

/
ϵ
)

n
∑m

t=1 exp
(
−Cθ

it

/
ϵ
) (9)

Setting P̃ = diag(1/n, . . . , 1/n), the KL-divergence becomes:

KL(P̃|Pθ) = −1
n

n∑
i=1

log

(
exp
(
−Cθ

ii/ϵ
)∑m

t=1 exp
(
−Cθ

it/ϵ
))+ Const (10)

▶ which is InfoNCE Loss!
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OPTIMAL TRANSPORT (OT)
IOT INSPIRES CL

Similarly, we could obtain the loss function under the circumstances in which U = U(1).

LU(1)
H = −1

n

n∑
i=1

log

(
n exp

(
−Cθ

ii/ϵ
)∑n

t=−1
∑m

s=1 exp
(
−Cθ

ts
)
/ϵ

)
(11)

However, if U = U(a,b), the closed-form coupling may not exists. We adopt Sinkhorn algorithm
[Appendix 1] to approximate:

LU(a,b)
H = −

m∑
i=1

n∑
j=1

log P̃ij

(
Pθ

ij

)K
(12)

Use other regularization, like G(P) =
∑

i,j

(
−1

2 P2
ij + Pij

)

LU(a)
G = −1

n

n∑
i=1

log

1
n
(1 +

n∑
j=1

(Cθ
ij − Cθ

ii))

 and LU(1)
G = −1

n

n∑
i=1

log

 1
n2 (n +

∑
s,t

(Cθ
st − Cθ

ii))
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BALANCED MATCHING
BALANCED MATCHING IOT-CL LOSS

Given two collective points sets within 2N data points, we get features {zi}N
i=1 and {z∗i }

N
i=1.

We denote z̃2k−1 = zk, z̃2k = z∗k .

Figure. Balanced Matching
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BALANCED MATCHING
BALANCED MATCHING IOT-CL LOSS

On the 2N data points,the cost matrix and P̃ij are defined as follows:

Cθ
ij =

{
+∞ if i = j
1− s̃ij otherwise

and P̃ij =

{
1/2N if (i, j) ∈ S
0 otherwise

(13)

where S = S1 ∪ S2, S1 and S2 are defined the cost matrix and coupling as below:

S1 =
{
(i, j) | i = 2k, j = 2k− 1

}
S2 =

{
(i, j) | i = 2k− 1, j = 2k

}
where k = 1, ...,N (14)
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BALANCED MATCHING
BALANCED MATCHING IOT-CL LOSS

Here we introduce different IOT-CL loss function for balanced matching problem under different
constraint relaxations .

IOT-CL Loss Under U(a)

LU(a)
IOT−CL = − 1

2N

∑
(i,j)∈S

log

 exp
(
−Cθ

ij/ϵ
)

∑2N
s=11i ̸=s exp

(
−Cθ

is/ϵ
)
 (15)

This is the same as NT-Xent loss in SimCLR [Chen et al. (2020)].

IOT-CL Loss Under U(1)

LU(1)
IOT−CL = − 1

2N

∑
(i,j)∈S

log

 2N exp
(
−Cθ

ij/ϵ
)

∑2N
s=1
∑2N

t=11s̸=t exp
(
−Cθ

st/ϵ
)
 (16)
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BALANCED MATCHING
BALANCED MATCHING IOT-CL LOSS

IOT-CL Loss Under U(a,b)

LU(a,b)
IOT−CL = − 1

2N

∑
(i,j)∈S

log
(

Pθ
ij

)K
(17)

where (Pθ
ij)

K is solved by Sinkhorn algorithm, K is the iteration number.

IOT-CL Loss Under Gradient Constraint Relaxation

Under different constraint relaxations, Pθ
ij will learn to approximate P̃ij in different ways.

We designed two gradient losses as below.

LTighten
IOT−CL = LU(a) → LU(a,b),K=1 → LU(a,b),K=2 → LU(a,b),K=4 → LU(a,b),K=8

LRelax
IOT−CL = LU(a,b),K=8 → LU(a,b),K=4 → LU(a,b),K=2 → LU(a,b),K=1 → LU(a)

(18)

where the changing interval is fixed.
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BALANCED MATCHING
GRADIENT EPSILON

IOT-CL Loss Under Gradient Epsilon

Figure. Entropic Regularization [Peyré and Cuturi (2019)].

Above figure illustrates the effect of the entropy to regularize a linear program over the simplex
∑

3.
We can see the entropy pushes the original LP solution away from the boundary of the triangle.

Thus the ϵ will control the "sharpness" of Pθ
ij. A gradient setting will help Pθ

ij move to P̃ij faster.
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BALANCED MATCHING
ALIGNMENT AND UNIFORMITY

We rethink the alignment and uniformity [Wang and Isola (2020)] from the matching prospective.
By adding the uniformity penalty, we can get alignment and uniformity loss with matching view:

min
θ

LUniform
IOT−CL = LIOT−CL + λpKL(Q̄θ|Pθ) (19)

where

Q̄θ
ij =

 Pθ
ij, positive pair

mean
negative pair

Pθ
ij, negative pair (20)

The uniformity penalty will enhance our IOT-CL loss. The detailed experiment results will be
available in our final paper.
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BALANCED MATCHING
VISUALIZATION

Figure. Visualization on balanced pair matching.
Figure. The effect of the Uniformity loss
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APPENDIX
SINKHORN ALGORITHM

Firstly, initialize Pθ:
(Pθ)0 = exp

(
−Cθ/ϵ

)
(21)

Then update it step by step: (
Pθ
)k
← 1

n

(
Pθ
)k−1

⊘
((

Pθ
)k−1

1m×m

)
(

Pθ
)k
← 1

m

(
Pθ
)k
⊘
((

1n×nPθ
)k
) (22)

where the symbol ⊘ represents element-wise division.

18 / 18


	Contrastive Learning (CL)
	Introduction
	Loss Function

	Optimal Transport (OT)
	Introduction
	Formalism
	Regularization
	Inverse Optimal Transport
	IOT Inspires CL

	Balanced Matching
	Balanced Matching IOT-CL Loss
	Gradient Epsilon
	Alignment And Uniformity
	Visualization

	References
	Appendix
	Sinkhorn Algorithm


